

CIRCULAÇÃO EXTRACORPÓREA E ORGÃOS ARTIFICIAIS

Jessyca Mateus de Sousa, Jordanna Mateus de Sousa, Rassan Dyego Romão Silva e Polyana Fernandes Gonçalves.

Faculdade Alfredo Nasser – Aparecida de Goiânia – GO – Brasil rassandyego@hotmail.com

Orientador: Jeffchandler B. Oliveira

RESUMO: A Circulação Extracorpórea é o ato de manter o paciente com suporte artificial de vida coração-pulmão artificial ou cardiopulmonar total, consiste em um console com dispositivos descartáveis que são montados de acordo com a necessidade do paciente. O objetivo desse trabalho é fazer uma apresentação da CEC (Circulação Extracorpórea), descrever o seu funcionamento e mostrar qual a sua importância. O estudo foi feito por meio de uma revisão bibliográfica, através de uma abordagem metodológica por método exploratório qualitativo.

PALAVRAS-CHAVE: CEC. Perfusão. Funcionamento. Importância.

INTRODUÇÃO

A Circulação Extracorpórea é o ato de manter o paciente com suporte artificial de vida coração-pulmão artificial ou cardiopulmonar total, consiste em um console com dispositivos descartáveis que são montados de acordo com a necessidade do paciente.

O objetivo desse trabalho é fazer uma apresentação da CEC (Circulação Extracorpórea), descrever o seu funcionamento e mostrar qual a sua importância.

METODOLOGIA

O estudo foi feito por meio de uma revisão bibliográfica, através de uma abordagem metodológica por método exploratório qualitativo.

RESULTADOS

Muito utilizada nas cirurgias cardiovasculares, mas também em outros procedimentos como as afecções da aorta, transplantes de coração e/ou

pulmão, transplante hepático e em alguns tipos de retirada de tumores, a Circulação Extracorpórea é o ato de manter o paciente com suporte artificial de vida coração-pulmão artificial ou cardiopulmonar total.

Imagem: Braile Biomédica

Tomando o paciente como referência para ínicio da CEC, o primeiro órgão artificial por onde o sangue percorre é o reservatório venoso.

Imagem: Braile Biomédica

Normalmente, grande parte deste sangue recebido necessita de uma oxigenação antes do retorno para o paciente, ou seja, trata-se de um sangue venoso.

Por tanto, o reservatório venoso recebe e armazena o sangue para uma posterior oxigenação e propulsão, desempenhando assim a função das nossas veias.

Ao sair do reservatório venoso, o sangue passa por um acessório análogo ao nosso coração, a bomba propulsora. Como o próprio nome já diz, a bomba

propulsora é o dispositivo que impulsiona o sangue não só pelo sistema de Circulação Extracorpórea mas também pelo sistema circulatório do paciente.

Imagem: Braile Biomédica

Ela pode ser de dois tipos bomba de rolete ou bomba centrífuga. Cada uma possui vantagens e desvantagens próprias, levando em conta aspectos como custo, índice hemolítico produzido e a física envolvida para a propulsão do sangue.

Independente do tipo de bomba propulsora permite que o perfusionista, que é o profissional habilitado a atuar nessa área, faça um controle minucioso e preciso do fluxo sanguíneo, podendo, por exemplo, manter a pressão do paciente em níveis normais, aumentado ou diminuindo o fluxo da bomba.

O sangue é impulsionado do reservatório venoso para o oxigenador, que basicamente, exerce a função do nosso pulmão.

O oxigenador é o dispositivo responsável pela oxigenação e eliminação do dióxido de carbono do sangue antes do seu retorno para o paciente.

Imagem: Braile Biomédica

Do oxigenador o sangue é bombeado para um dispositivo chamado de hemoconcentrador. Este dispositivo possui em seu interior uma membrana semipermeável que permite a passagem de água, eletrólitos e outras substâncias de baixo peso molecular através de seus poros, favorecida pela pressão hidrostática. O hemoconcentrador, elimina rapidamente o volume hídrico em excesso. O hemoconcentrador seria de certa forma, um rim artificial.

Imagem: Braile Biomédica

Além destes, outros dois dispositivos normalmente compõem o sistema de Circulação Extracorpórea, que é, o permutador térmico e o filtro arterial.

O Permutador Térmico, permite o controle térmico do paciente pela regulação da temperatura da água, que circula no seu interior sem que haja o contato da mesma com o sangue, através de difusão térmica.

Já o Filtro Arterial, é responsável pela remoção de partículas e microbolhas do sangue oxigenado antes de sua infusão no sistema circulatório do paciente.

Imagem: Braile Biomédica

Devemos ressaltar que, os órgãos artificiais não substituem todas as funções dos nossos órgãos, como o papel imunológico e hormonal dos nossos pulmões e rins, respectivamente. Sem falar, que sua eficiência máxima é algumas horas, ou poucos dias, e necessitam do controle e monitoramento constante do perfusionista para o seu bom funcionamento.

No entanto, as cirurgias que demandam o uso de Circulação Extracorpórea não ocorreriam sem eles.

CONSIDERAÇÕES FINAIS

Pode-se concluir que a perfusão extracorpórea ou Circulação extracorpórea é um método utilizado em cirurgia cardíaca que consta da utilização de uma máquina (coração- pulmão artificial) que temporariamente é capaz de substituir as funções do coração e dos pulmões oxigenando o sangue e bombeando-o através do sistema circulatório, de tal forma a permitir a parada do coração e consequentemente permitir o tratamento de suas lesões congênitas ou adquiridas.

E que os equipamentos do sistema de CEC são extremamente especializados para a sua função, de bombeamento, oxigenação, filtração e transporte do sangue.

A evolução da circulação extracorpórea ao longo dos anos, passando de um procedimento extremamente arriscado para um processo sistemático, minucioso, seguro e rotineiro, fez com que a CEC se torna-se algo praticado diariamente em milhares de centros cirúrgicos no mundo todo.

REFERÊNCIAS

Stammers A H - Historical aspects of cardiopulmonar bypass: from antiquity to acceptance. J Cardiothorac Vasc Anesth 1997; 11: 266-74.

Souza M H L & Elias D O - **Circulação extracopórea: histórico e desenvolvimento**. In: Fundamentos da circulação extracorpórea. Rio de Janeiro, Centro Editorial Alfa Rio, 1995: V. 1: 1-27.